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Abstract

A method for combining datasets from gated cardiac
PET acquisitions is described. Optical flow techniques are
used to accurately model non-rigid motion present during
the cardiac cycle so that a one-to-one mapping is found
between each voxel of two gated volumes. Using this map-
ping, images can be combined to produce a composite
dataset with improved statistics and reduced motion-
induced blur. Like recent past efforts in deformable
motion, an image similarity measure is combined with
elastic constraints to obtain a valid flow field. Addition-
ally, because of the noisy characteristics of individual
reconstructed volumes in a gated PET study, 4D and mul-
tiscale techniques were used in this paper to obtain more
accurate motion estimates. Results using data from gated
cardiac studies on canine and human subjects are pre-
sented.

1. INTRODUCTION

Gated acquisition of Positron Emission Tomography
(PET) data is a common method for compensation of
motion due to the cardiac cycle in imaging of the heart. In
this process, tomographic data are collected while moni-
toring electrocardiograph (ECG) signals. Depending upon
the time since the last cardiac R-wave, the data are
directed into different histograms. Data from multiple
heart beats are accumulated into each histogram. By
choosing time segments short enough, the motion of the
heart can be effectively frozen as the data are indepen-
dently reconstructed into separate 3D image volumes. An
unfortunate side-effect of this gating is that the statistical
quality of each gated image suffers as the total number of
PET events is distributed over a number of different

images. One way to improve statistics in a gated study is
simply to increase the acquisition time of each histogram
to the acquisition time normally used in a static (i.e. non-
gated) study. However, this tactic is usually infeasible
because of short-lived imaging radiotracers or because of
patient’s ability to remain stationary in the scanner for this
extended time period. An alternate approach for improv-
ing image statistics is to sum the gated reconstructions, but
to do so without introducing motion-induced blur, a corre-
spondence must first be found between the voxels in each
dataset. Only after this one-to-one mapping is obtained
can these corresponding voxels be added.

For two volumetric datasets representing an object
undergoing a simple rigid-body motion, the correspon-
dence problem amounts to finding the six parameters of
translation and rotation which best align two gated images,
or gates, as they will be called in this paper. This is the
type of motion model which has frequently been used for
registering different 3D datasets of the brain [1],[2].
Motion of the heart throughout the cardiac cycle, however,
is not rigid. The walls of the heart move as an elastic body
during the cardiac contraction. Therefore, rather than a six
parameter motion model relating the position of a voxel in
one dataset with its corresponding voxel in the other, a
dense 3D vector map at the same resolution of the dataset
is required to describe the deformations.

This paper describes how 3D optical flow techniques
were used to obtain the non-rigid motion estimates
between gates in cardiac18F-fluorodeoxyglucose (FDG)
PET studies obtained from canine and human subjects.
Because individual gates can be quite noisy, a multi-scale
approach was used to insure robust results. Once motion
estimates are obtained, the individual gates are deformed
to match a reference time, typically chosen to be diastole.
Because the composite dataset represents the tomographic
events from the entire acquisition, the resulting image sta-



tistics are improved, yet motion induced blur is reduced
because of the non-rigid motion compensation.

2. BACKGROUND

Optical flow techniques have historically been used to
estimate pixel correspondences between 2D images
obtained from two different viewpoints or at two different
times. The vector field describing the mapping between
corresponding pixels in two images is called a flow field.
Classically, researchers have relied on two types of con-
straints to determine the flow field: first an image matching
constraint, and second a smoothness constraint on the
resulting flow field. For example, Horn and Schunck [3]
make the assumption that for small changes in camera
position, the image intensity will be approximately con-
served in the two images for pixels corresponding to the
same object in space [3]. They combine this constraint
with a global motion vector smoothness constraint to
obtain a least squares solution of the motion field. Fitz-
patrick [4] generalized these ideas to suggest that one-to-
one geometric image transformations could be found
describing deformable motion for 3D density images, like
those typically produced by modern PET, computed
tomography (CT), or magnetic resonance imaging (MRI)
devices. Song and Leahy [5] expanded these ideas and the
optical flow formulation of Horn [3] to produce an algo-
rithm for estimating the 3D transformation between
frames in sequence of ultrafast CT cardiac images. Image
similarity measures are based on the assumption of con-
servation of matter, analogous to Horn’s pixel brightness
conservation constraint. Like Horn’s algorithm, Song’s 3D
implementation imposed a smoothness measure on the
flow field to arrive at a unique solution to the problem. In a
later work [6], Song added a divergence-free constraint to
improve on the accuracy of the flow field. In a related
work based on optical flow, Zhou,et al. [7] implemented a
multiresolution approach using an image matching crite-
rion and non-linear regression which would allow solu-
tions for datasets with large interframe displacements.

A parallel body of work on deformable models has
developed as a result of efforts to match brain datasets to a
generalized brain atlas. These algorithms invoke a similar
image matching criterion as the optical flow techniques,
but replace the flow field smoothness and divergence free
criterion with more realistic elastic material models.
Bajcsy and Kovacic [8] were of the first to propose an
implementation, where they used a linear elastic material
model given by:

Here, the displacement field is defined in their notation as

, , and

are elasticity constants, and is the “body force” derived

from the image similarity measure which drives the defor-
mation. Christensen,et al. [9],[10] substituted the linear
elastic model with a viscous fluid model to arrive at an
algorithm more capable of tracking large deformations,
however, the added computational complexities are con-
siderable. Other researchers [11],[12], have combined sur-
face-based correspondences with density information to
obtain a global deformation which best brings two density
datasets into registration.

As seen in Figure 1, the primary feature in FDG PET
images of the heart is the left ventricle, which represents
the tissue with the greatest radiotracer uptake once the
tracer clears the blood pool. Adjacent tissue, such as the
atria, right ventricle, blood pool and lung appear primarily
as a noisy background. It can be seen from the figure that
the movement of corresponding points between diastole
and systole can be on the order of several voxels. Because
the entire left ventricle remains within the field of view in
all gates, it is a reasonable assumption that voxel intensity
is conserved. Likewise, because the ventricle is a continu-
ous elastic body, it is reasonable to impose a smoothness
criterion for the flow field describing the ventricular
motion.

3. DATA ACQUISITION

Cardiac PET data were acquired using the CTI/Sie-
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Figure 1. Three orthogonal slices of a gated human
cardiac dataset. Top three images show heart
during diastole, bottom three show the heart during
systole.



mens ECAT EXACT HR tomograph which we have modi-
fied in collaboration with CTI, Inc. for doubly-gated
acquisitions. Details of this acquisition system, which
allows gating of both the respiratory and the cardiac
cycles, may be found in [13]. For the emission study, the
subject is first injected with the radiotracer,18F-fluorode-
oxyglucose. After allowing time for the isotope to clear
the blood pool, emission data are collected for 20 minutes,
distributing the data into 16 different gates. For the canine
study, the cardiac cycle was divided into 8 25-msec seg-
ments beginning at the peak of the R-wave, and the respi-
ratory cycle was divided into 2 segments, one representing
end expiration, the other representing inspiration. In the
human study, the cardiac cycle was divided into 11 100-
msec segments, and the respiratory cycle was divided into
5 segments. Because of memory limitations in the tomo-
graph hardware, cardiac gating was carried out during
only one of the respiratory segments. Acquisition time for
the human study was 30 minutes. Prior to the administra-
tion of the isotope in both studies, a 20 minute ungated
transmission dataset was acquired to correct for the effects
of attenuation. Each gate was separately reconstructed into
128× 128 × 47 voxel volume (voxel size 1.0× 1.0 ×
3.1 mm) using standard filtered backprojection techniques.

4. MOTION ESTIMATION

We use a similar approach to Zhou,et al. [7], where
the image matching constraint is a function of the differ-
ence between a reference volume and the deformed vol-
ume and where the solution is regularized by imposing
smoothness and incompressibility constraints. In addition,
our formulation makes use of 4D information by adding
a priori motion information from adjacent time frames.
The motion estimation framework is described as follows.
Define two 3D density fields, , and ,

, in a discrete domain,
,

where are the dimensions of the image vol-
ume. A motion field is defined as,

and the deformed volume of  is,
.

Assuming and are perfect measurements of a con-
served medium, the goal of the motion estimation tech-
nique is to find the motion field such that

.

Since the motion field defines a one-to-one mapping, we
can also define the deformed volume of  as

With these equations, we wish to calculate the motion field
such that the following error measures over each voxel are
minimized:

image matching:

smoothness:

incompressibility:

and consistency with a prediction field:

where we use the notation, and where

are scalars used to weight the different error

terms.
A least squares solution to the weighted error terms

over all voxels is found via successive linear approxima-
tions of and . Assuming the true motion field
is m, and the current estimate of the field is , then a Tay-
lor series approximation for can be defined in terms
of  as:

Similarly,  and

Substituting this relation into the error equations, the fol-
lowing Euler-Lagrange equations for  can be derived:

These equations are solved via standard finite differ-
ence techniques using a steepest descent algorithm. At
each step, and are recomputed and the best

minimizing the weighted error terms is calculated.
This motion field increment is added to the overall motion
field and the procedure is repeated until the algorithm con-
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verges to a solution.
Though the motion vector field describes a one-to-one

mapping in a continuous domain, some subtleties are
involved in the calculation of and on a dis-
crete grid. The arguments,r andm, are defined on a uni-
form grid in the forward mapping of to obtain

, but their sum is a real-valued vector.
Therefore, the value of is obtained by trilinearly
sampling values from the volume at the real-valued
spatial location, . Obtaining is
a bit more difficult. Displacement of points in the vol-
ume effectively results in a cloud of unevenly spaced point
samples of a continuous volume. Simply distributing these
values into the nearest voxel on a uniform grid results in
substantial artifacts in the resulting deformed dataset. To
avoid these problems, a backward projection of the vol-
ume is used. For each point in the deformed volume,

, the immediate neighborhood of displaced voxels is
sampled. The displaced voxels within this neighborhood
are weighted by a Gaussian function according to the dis-
tance from the sampled voxel. The size of the neighbor-
hood of displaced voxels is determined by the maximum
magnitude of the flow vector field. To speed calculation,
the size of the neighborhood is determined by computing
the maximum flow vector field magnitude over subpor-
tions of the total volume. This limits the size of the sam-
pling neighborhood in regions where the motion is small.

The prediction flow field
was obtained using motion calculations from adjacent
time segments. It is assumed that a particle in a volume
between timesti and ti+1 will move at approximately the
same velocity between the volumes acquired at timesti+1

and ti+2. A flow field approximating this motion can be
obtained by deforming itself in a manner similar to the

deformation. That is, we obtain the flow field esti-
mate as , ,

. Likewise, a similar relation can be found
to obtain a backward estimate of the flow field between
times ti+1 and ti+2 based on the calculated flow field
betweenti+2 andti+3.

In addition to including the prediction term, it was
found that because of the noisy characteristics of the indi-
vidual PET gates and because of fairly large displacements
with respect to the voxel size, a multiscale approach was
useful to obtain suitable convergence. The 128× 128 ×
47 volume was subsampled into 64× 64× 23, 32× 32×
23 and 16× 16 × 23 datasets using a uniform cubic B-
spline approximation to a Gaussian pyramid [13]. A
motion flow field solution was found at the lowest resolu-
tion, then was propagated at the next level as the initial
condition of the flow field. This technique not only
speeded the overall convergence, but in many cases it was
found necessary to avoid solutions at incorrect local min-

ima.
Once the deformed volume, matching is

obtained, subsequent processing to obtain a composite
PET dataset is straightforward. The composite sum is
computed as

Because the deformed volume conserves the total
counts present in the original volume (except at the vol-
ume borders), the composite volume represents the total
PET counts acquired in the two gates. In general, data
from all cardiac gates could be combined to form a single
composite image. This paper will only consider the sum-
ming of two frames.

5. RESULTS

5. 1. Simple Translation

As a demonstration of the technique on a simple
object, the algorithm was applied to the translating ellip-
soid on a noise-free background seen in Figure 2a,b. Fig-
ures 2c,d show the resulting x-component of the estimated
flow field for two cases, the former using a small smooth-
ness constraint weighting, the latter, using a large smooth-
ness weighting. For the first case, where the smoothness
constraint is small, it is seen that the motion estimate is
nonzero only in the vicinity of the primary feature, i.e. the
edges of the central ellipsoid. However, in the case using a
large smoothness weighting, the flow field propagates so
that the entire field is approximately a uniform translation.
The deformed volumes, , for each case are shown in
Figures 2e,f. We see that in this example, the resulting
deformed volumes for the two cases are similar even
though the flow fields are markedly different. Obviously,
this is true here because the background contributes noth-
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Figure 2. Translating Ellipsoidal Volume. Reference
volumes (a,b), estimated flow fields for two cases
(c,d) and resulting deformed volumes (e,f).

f̂ 1 r( )



ing to the deformed image. However, this characteristic is
also partially true for the case of the “bright” ventricle on a
dark noisy background. Accurate estimates of a deformed
ventricular motion could be obtained using a large
smoothness constraint that would enforce a smooth motion
map even though the ventricular motion may be disjoint
from adjacent material in the background, such as the
blood pool and lung tissue.

5. 2. Simulated Cardiac Phantom

A realistic cardiac PET phantom was next used to test
the algorithm. The phantom was obtained using the Math-
ematical CArdiac Torso (MCAT) software implemented at
the University of North Carolina [14], [15], and provides a
realistic dataset of the emission PET image of a beating
heart against a zero background. Figure 3a,b shows three
orthogonal slices through the dataset at two successive
frames. Because of the noise-free nature of the data and
the relatively small displacement with respect to the voxel
size, a multi-scale approach was not necessary here. As a
test of the 4D algorithm, flow estimates were made for
four successive frames and were used to calculate a pre-

diction motion field for the gates displayed in this figure.
The results, shown via the deformed volume, , in Figure
3c, indicate that the algorithm appears to correctly track
motion for this non-rigid case.

5. 3. Data From Canine PET Study

Two gated images acquired from the described dog
study were selected for testing the algorithm. A gate dur-
ing diastole was chosen as ; a gate at systole was cho-
sen as . Three orthogonal slices through each dataset are
seen in Figure 3. The motion estimation technique using
only two time frames was carried out to obtain the appro-
priate mapping which warps the systole dataset to best
match the volume at diastole. Figure 4 displays slices from
the two gates, and the warped datasets, and . For
these data a multi-scale approach was used, but the data
were statistically good enough to obtain reasonable
motion estimates without using prediction information
from adjacent time frames. The deformed volumes in Fig-

(C)

(B)

(A)

Figure 3. Three orthogonal slices of the MCAT
cardiac phantom. Time frame f1 is displayed in the
top row, the next frame, f2, is shown in the middle
row(B). Note the thickening of the ventricles and
the inward contraction. The deformed volume of f2
is seen in the bottom row (C) showing a good
match with the target frame, f1.

f̂ 2
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f 2
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(B)

(C)

(D)

Figure 4. Three orthogonal slices of a gated cardiac
canine study. A motion field is computed to register the
diastole dataset (A) with data acquired near systole (B).
The backward deformation of (B) is seen in the third
row (C), and the forward deformation of diastole is seen
in the bottom row (D). Both deformations provide a
good match to the target volume.

f̂ 1 f̂ 2



ures 4c,d show that a reasonable motion estimate was
made to produce a dataset matching the heart shape at end
diastole.

Results of combining the motion-corrected data are
presented in Figure 5. The top row of images represent the
data summed without prior motion compensation. Com-
paring with the same slices depicted in Figure 4a,b, it is

obvious that the contractile motion of the heart is blurred
by such summing. The top row of images (Figure 5a) show
the resulting sum using the motion corrected systole
dataset. Motion-induced blurring is reduced.

5. 4. Data From Human PET Study

Transverse slices from two successive gates acquired

(A)

(B)

Figure 5. Combined gated data from cardiac dog study. Top row show images combined using
motion compensation. In the bottom row, images are combined without motion compensation,
inducing a blur proportional to the cardiac movement.

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6. Human cardiac data (transverse slice) from two successive gates. Original frames f1 (A) and f2 (B)
are used to calculate a motion field. Forward deformation of (A) results in image (D); backwards deformation
of image (B) results in image (C). Adding original frame (A) with deformed image (C) results in the motion-
compensated composite image (E). Less blurring is present than the non-compensated sum in (F).



from a human cardiac study are shown in Figure 6a,b.
Using the notation defined previously, Figure 6a corre-
sponds to , Figure 6b corresponds to . Deformation
of the heart as it progresses from diastole to systole is evi-
dent by observing the edge mask of overlaid on .
Because the individual gates of the human study were
noisier than for the canine study, 4D priors were used in
this solution. Estimates of flow fields for four successive
gates were obtained using the multiscale techniques previ-
ously described. Once initial estimates were obtained, they
were used to provide 4D information as a prediction field
for the central gates displayed here. The resulting
deformed volumes, , and obtained after calculation
of the flow field are seen in Figures 6c,d respectively. Note
that even though considerable deformation was required,
as shown in Figure 7, the match between the deformed
images and their reference is quite good. Results of sum-
ming images are shown in Figures 6e,f. The bottom image
(6f) shows the result of a simple sum of the two gates
without motion compensation; the top image (6e) shows
the sum, . Comparison of the edge
map of overlaid on the uncompensated sum
shows how the motion compensation reduces blur.

6. DISCUSSION

The motivation for development of this algorithm
grew out of past experience which showed that though car-
diac gating can stop motion due to the beating heart in
practice, it is frequently of little consequence in PET
imaging because the resulting gates are individually of
poor quality due to limited statistics. We have demon-
strated that by using a deformable motion model, it is fea-
sible to effectively combine image data obtained from

different segments of the cardiac cycle. It is hoped that
because of the improved statistics in the composite motion
corrected image, quantitative measurements can be
improved by this technique. We note that in its current
form, the algorithm appears to only track the gross heart
movement, primarily in a direction normal to the myocar-
dial surface. It is known that complex motion occurs dur-
ing the cardiac contraction. A nonuniform orientation of
the myocardial fibers induces complex twists and stretches
that are often tangential to the surface of the ventricle
boundaries [16],[17]. Such motion would be hard to detect
from PET data not only due to the spatial and temporal
limitations of the detector, but also because of a lack of
trackable features within the myocardium. Therefore, we
do not propose that the motion model would be useful for
strain and related kinematic calculations. However, when
suitable features do exist, such as a local isotope uptake
nonuniformity within the myocardium, it is expected that
the algorithm will perform adequately because of the
image matching and incompressibility constraints
imposed.

As discussed in the background section, a number of
researchers have already proposed algorithms for obtain-
ing deformable motion estimates. However, because opti-
cal flow and other deformation techniques rely heavily on
spatial and temporal derivatives, their success is question-
able when applied to noisy datasets. This approach is
unique in three separate aspects which were implemented
to overcome the noisy characteristics of conventional
gated cardiac data. First because the deformation opera-
tion intrinsically involves interpolation of offset voxel val-
ues, the forward and backward deformation will not
produce identical error terms in the image matching con-
straint. For this reason, we simultaneously try to minimize
the matching error of both the forward and backward
transforms. The consequence of the procedure is a more
robust estimation of the flow field that can be used to pro-
duce either deformed volume, namely, , and . Sec-
ond, a multiscale approach is used to both speed the
convergence of the algorithm, and to avoid local minima.
Finally, the technique makes use of optical flow informa-
tion from adjacent time slices to obtain a prediction flow
field for use in the estimation.

Comparing the smoothness and incompressiblity
terms of our formulation with the elastic material model
term of Bajcsy, we can note similarities. Both constrain
the divergence and the smoothness of the motion flow
field. At this point, we have not researched the most effec-
tive settings for the divergence and smoothness terms. Pre-
sumably, one would want to match the parameters to best
characterize the elasticity of the myocardium. It should
also be noted that this model assumes that the object in the
field of view is homogeneous, and we know for a fact that

f 1 f 2

f 1 f 2

f̂ 1 f̂ 2

Figure 7. Motion field between two gates in a human
cardiac study are displayed as the warp of a uniform
grid. It is seen that considerable deformation is
required to bring the images into register, yet the
elastic constraints result in no topology changes.
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this is not true. For example, the elasticity of the blood
pool and the lung tissue is considerably different from the
myocardium. Additionally, there are areas where adjacent
media are not connecting, and therefore a shearing motion
would be possible. Fortunately for the case of PET data,
these adjacent regions do not contribute significantly to the
image data, so such issues are not a problem. For modali-
ties where this characteristic would be true, such as MRI,
one may have to employ nonisotropic elasticity models.
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